Smooth Muscle Cell Genome Browser: Enabling the Identification of Novel Serum Response Factor Target Genes
نویسندگان
چکیده
Genome-scale expression data on the absolute numbers of gene isoforms offers essential clues in cellular functions and biological processes. Smooth muscle cells (SMCs) perform a unique contractile function through expression of specific genes controlled by serum response factor (SRF), a transcription factor that binds to DNA sites known as the CArG boxes. To identify SRF-regulated genes specifically expressed in SMCs, we isolated SMC populations from mouse small intestine and colon, obtained their transcriptomes, and constructed an interactive SMC genome and CArGome browser. To our knowledge, this is the first online resource that provides a comprehensive library of all genetic transcripts expressed in primary SMCs. The browser also serves as the first genome-wide map of SRF binding sites. The browser analysis revealed novel SMC-specific transcriptional variants and SRF target genes, which provided new and unique insights into the cellular and biological functions of the cells in gastrointestinal (GI) physiology. The SRF target genes in SMCs, which were discovered in silico, were confirmed by proteomic analysis of SMC-specific Srf knockout mice. Our genome browser offers a new perspective into the alternative expression of genes in the context of SRF binding sites in SMCs and provides a valuable reference for future functional studies.
منابع مشابه
Multi-phenotypic Role of Serum Response Factor in the Gastrointestinal System
Serum response factor (SRF) is a master transcription factor of the actin cytoskeleton that binds to highly conserved CArG boxes located within the majority of smooth muscle cell (SMC)-restricted promoters/enhancers. Although most studies of SRF focus on skeletal muscle, cardiac muscle, and vascular SMCs, SRF research has recently expanded into the gastrointestinal (GI) system. Genome scale ana...
متن کاملRecruitment of serum response factor and hyperacetylation of histones at smooth muscle-specific regulatory regions during differentiation of a novel P19-derived in vitro smooth muscle differentiation system.
Little is known regarding transcriptional regulatory mechanisms that control the sequential and coordinate expression of genes during smooth muscle cell (SMC) differentiation. To facilitate mechanistic studies of SMC differentiation, we established a novel P19-derived clonal cell line (designated A404) harboring a smooth muscle (SM) alpha-actin promoter/intron-driven puromycin resistance gene. ...
متن کاملMYOSLID Is a Novel Serum Response Factor-Dependent Long Noncoding RNA That Amplifies the Vascular Smooth Muscle Differentiation Program.
OBJECTIVE Long noncoding RNAs (lncRNA) represent a growing class of noncoding genes with diverse cellular functions. We previously reported on SENCR, an lncRNA that seems to support the vascular smooth muscle cell (VSMC) contractile phenotype. However, information about the VSMC-specific lncRNAs regulated by myocardin (MYOCD)/serum response factor, the master switch for VSMC differentiation, is...
متن کاملActivation of Cardiac Gene Expression by Myocardin, a Transcriptional Cofactor for Serum Response Factor
Serum response factor (SRF) regulates transcription of numerous muscle and growth factor-inducible genes. Because SRF is not muscle specific, it has been postulated to activate muscle genes by recruiting myogenic accessory factors. Using a bioinformatics-based screen for unknown cardiac-specific genes, we identified a novel and highly potent transcription factor, named myocardin, that is expres...
متن کاملIdentification of a novel TGF-β-miR-122-fibronectin 1/serum response factor signaling cascade and its implication in hepatic fibrogenesis
Transforming growth factor-β (TGF-β) is a potent cytokine that promotes the development of fibrogenic cells, stimulates the expression of fibrosis-related genes, and consequently results in hepatic fibrogenesis. The involvement of miRNAs in this process remains largely unknown. We showed that miR-122 was substantially expressed in hepatic stellate cells (HSCs) and fibroblasts, the major sources...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015